

Institute of Mathematical Research Department of Mathematics

GEOMETRY SEMINAR

W-entropy formulas on super Ricci flows and optimal transportation problem on Riemannian manifolds

Professor Xiang-Dong Li

Academy of Mathematics and Systems Science, Chinese Academy of Sciences

Abstract

In this talk, we give an overview of our recent works on the study of the Wentropy for the heat equation of the Witten Laplacian on super-Ricci flows and the optimal transportation problem on Riemannian manifolds. Inspired by Perelmans seminal work on the Ricci flow, we proved the W-entropy formula for the heat equation of the Witten Laplacian on complete Riemannian manifolds with the CD(K, m)-condition and for the heat equation of the time dependent Witten Laplacian on compact manifolds equipped with a (K, m)-super Ricci flow, where $m \in [n, \infty]$ and $K \in \mathbb{R}$. Furthermore, we proved an analogue of the W-entropy formula for the Wasserstein geodesic flow which corresponds to the optimal transportation problem on Riemannian manifolds, which recaptures a previous result due to Lott and Villani on the displacement convexity of the Boltzmann-Shannon type entropy on Riemannian manifolds with non-negative Ricci curvature. We introduce the Langevin deformation of geometric flows, which interpolate the geodesic flow and the gradient flows on the Wasserstein space over Riemannian manifolds, and prove the W-entropy formula for the Langevin deformation. Finally, we make a discussion on the W-entropy for the Ricci flow from the point of view of statistical mechanics and probability theory. This is a joint work with Songzi Li.

Date: June 19, 2017 (Monday)

Time: 4:00 – 5:00pm

Venue: Room 210, Run Run Shaw Bldg., HKU